Cyclic AMP signaling control of action potential firing rate and molecular circadian pacemaking in the suprachiasmatic nucleus.

نویسندگان

  • Susan E Atkinson
  • Elizabeth S Maywood
  • Johanna E Chesham
  • Christian Wozny
  • Christopher S Colwell
  • Michael H Hastings
  • Stephen R Williams
چکیده

Circadian pacemaking in suprachiasmatic nucleus (SCN) neurons revolves around transcriptional/posttranslational feedback loops, driven by protein products of "clock" genes. These loops are synchronized and sustained by intercellular signaling, involving vasoactive intestinal peptide (VIP) via its VPAC2 receptor, which positively regulates cAMP synthesis. In turn, SCN cells communicate circadian time to the brain via a daily rhythm in electrophysiological activity. To investigate the mechanisms whereby VIP/VPAC2/cAMP signaling controls SCN molecular and electrical pacemaking, we combined bioluminescent imaging of circadian gene expression and whole-cell electrophysiology in organotypic SCN slices. As a potential direct target of cAMP, we focused on hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Mutations of VIP-ergic signaling compromised the SCN molecular pacemaker, diminishing the amplitude and intercellular synchrony of circadian gene expression. These deficits were transiently reversed by elevation of cAMP. Similarly, cellular synchrony in electrical firing rates was lost in SCN slices lacking the VPAC2 receptor for VIP. Whole-cell current-clamp recordings in wild-type (WT) slices revealed voltage responses shaped by the conductance I(h), which is mediated by HCN channel activity. The influence of I(h) on voltage responses showed a modest peak in early circadian day, identifying HCN channels as a putative mediator of cAMP-dependent circadian effects on firing rate. I(h), however, was unaffected by loss of VIP-ergic signaling in VPAC2-null slices, and inhibition of cAMP synthesis had no discernible effect on I(h) but did suppress gene expression and SCN firing rates. Moreover, only sustained but not acute, pharmacological blockade of HCN channels reduced action potential (AP) firing. Thus, our evidence suggests that in the SCN, cAMP-mediated signaling is not a principal regulator of HCN channel function and that HCN is not a determinant of AP firing rate. VIP/cAMP-dependent signaling sustains the SCN molecular oscillator and action potential firing via mechanisms yet to be identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus

The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well und...

متن کامل

A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits.

The suprachiasmatic nucleus (SCN) is the principal circadian pacemaker of mammals, coordinating daily rhythms of behavior and metabolism. Circadian timekeeping in SCN neurons revolves around transcriptional/posttranslational feedback loops, in which Period (Per) and Cryptochrome (Cry) genes are negatively regulated by their protein products. Recent studies have revealed, however, that these "co...

متن کامل

Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker

Bmal1 is an essential transcriptional activator within the mammalian circadian clock. We report here that the suprachiasmatic nucleus (SCN) of Bmal1-null mutant mice, unexpectedly, generates stochastic oscillations with periods that overlap the circadian range. Dissociated SCN neurons expressed fluctuating levels of PER2 detected by bioluminescence imaging but could not generate circadian oscil...

متن کامل

Differential cAMP gating of glutamatergic signaling regulates long-term state changes in the suprachiasmatic circadian clock.

We investigated a role for cAMP/protein kinase A (PKA) in light/glutamate (GLU)-stimulated state changes of the mammalian circadian clock in the suprachiasmatic nucleus (SCN). Nocturnal GLU treatment elevated [cAMP]; however, agonists of cAMP/PKA did not mimic the effects of light/GLU. Coincident activation of cAMP/PKA enhanced GLU-stimulated state changes in early night but blocked light/GLU-i...

متن کامل

A Model for the Fast Synchronous Oscillations of Firing Rate in Rat Suprachiasmatic Nucleus Neurons Cultured in a Multielectrode Array Dish

When dispersed and cultured in a multielectrode dish (MED), suprachiasmatic nucleus (SCN) neurons express fast oscillations of firing rate (FOFR; fast relative to the circadian cycle), with burst duration ∼10 min, and interburst interval varying from 20 to 60 min in different cells but remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biological rhythms

دوره 26 3  شماره 

صفحات  -

تاریخ انتشار 2011